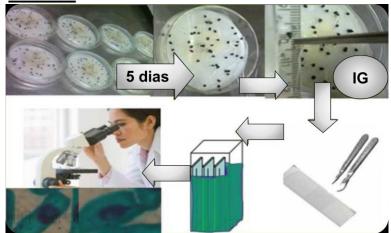


Avaliação de genotoxicidade de sedimentos, in natura e seus extratos orgânicos, do Rio Taquari em *Allium cepa*

Kewen Ubirajara Dias Silva^{1,3}, Paula Hauber Gameiro ², Clarice Torres de Lemos¹

¹PIBIC/CNPQ/Fundação Estadual de Proteção Ambiental Henrique Luiz Roessler – FEPAM; ² Centro de Ecologia, Curso de Pósgraduação em Ecologia, Universidade Federal do Rio Grande do Sul; ³Universidade Federal do Rio Grande do Sul-UFRGS. kewen.d@hotmail.com; claricetl@gmail.com


INTRODUÇÃO

Estudos para detecção de danos genotóxicos fornecem dados da qualidade aquática e seus efeitos sobre este ecossistema. O teste de *Allium cepa* é utilizado para avaliar danos ao DNA e perturbações no ciclo mitótico. O objetivo deste trabalho foi avaliar a toxicidade e genotoxicidade de amostras de sedimento *in natura*, em quatro pontos de captação de água potável, TA006, TA011, TA032 e TA063; e extratos orgânicos de sedimentos de TA011 e TA032, do Rio Taquari (TA). Através da análise do índice mitótico (IM), índice germinativo (IG) e micronúcleos (MN).

MATERIAIS E MÉTODOS

<u>Área de estudo e amostras</u>: Rio Taquari/Antas, focando um gradiente de áreas de captação de água potável: TA006: General Câmara (irrigação de arroz, lazer, extração de areia, cascalho e argila); TA011; Triunfo, distrito de Barreto (2km à montante de sítio contaminado por preservantes de madeira); TA032: Taquari (transporte hidroviário, extração de areia e rochas, agricultura irrigada); TA063: Bom Retiro do Sul (turismo, lazer, pesca, transporte hidroviário).

Figura 1: Etapas do ensaio com sementes de *Allium cepa*, coloração das lâminas e análise dos MN.

RESULTADOS

Tabela 1: Análises de toxicidade e genotoxicidade realizadas em exposições de sementes de *Allium cepa* às amostras de sedimento *in natura* do Rio Taquari.

Amostra	IG %	IM Freq./ 1000	MN
C-	100	0,032	3
C+	136	0,070	17***
TA006	125	0,059	6i
TA011	97	0,039	1
TA032	97	0,034	13***
TA063	136	0,047	7i

<u>Sedimentos in natura</u>: Cem sementes para germinar em presença de amostras e controles, positivo, C+ (dicromato de potássio) e negativo, C- (H₂O de poço artesiano) por cinco dias (Fig 1);

Extratos orgânicos: Sementes postas para germinar em duas concentrações ($40\mu g$ e $80\mu g$) de extrato orgânico (obtido anteriormente ao estudo) e controles, positivo, C+ e dois negativos, C- e C- DMSO (DMSO + H_2O de poço artesiano) por cinco dias dos pontos TA011 e TA032;

Para análise de MN, fixar raízes em metanol/ácido acético (3:1), hidrolisadas com ácido clorídrico, e coradas com Feulgen. Analisando-se 3000 células/amostras;

Toxicidade determinada através de IM (células em divisão/1000) e IG (toxicidade determinada pela queda na germinação inferior a 60% comparado ao C-) ao final de cinco dias.

Tabela 2: Análises de toxicidade e genotoxicidade realizadas em exposições de sementes de *Allium cepa* às amostras de extratos orgânicos de sedimento do Rio Taquari, até o momento.

Amostra	IG %	IM Freq./ 1000	MN
C-	100	0,029	2 (Freq./1500)
C+	108	0,032	8 (Freq./1500)
TA011 (40µg)	88	0,013	2 (Freq./1500)
TA011 (80µg)	98	-	-
TA032 (40µg)	90	0,016	2 (Freq./1500)
TA032 (80µg)	79	-	-
C- DMSO	106	-	-

DISCUSSÃO E CONCLUSÃO

Considerando os resultados para IG e IM (sedimento *in natura*) não foram observadas respostas positivas a toxicidade. Para análise de MN, verificou-se indícios de resposta positiva pelo sedimento de TA006 e TA063 e diferença significante em relação ao controle negativo na amostra TA032. Através do IG não verificou-se respostas positivas para toxicidade nos extratos orgânicos, entretanto houve queda de

50% no IM de TA011 e TA032 em relação aos controles. As análises genotóxicas ainda estão em andamento, mas podem ser seriamente afetadas por essa queda na divisão celular, indicando toxicidade dos extratos. *Allium cepa* foi sensível em detectar poluentes genotóxicos em sedimentos *in natura*, do Rio Taquari, mas outras concentrações de extratos devem ser analisadas.

Apoio: PIBIC/FEPAM/CNPq

^{***=} significante à p≤ 0,001; i= indícios de resposta positiva.